skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Springer, Caleb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For any subset$$Z \subseteq {\mathbb {Q}}$$, consider the set$$S_Z$$of subfields$$L\subseteq {\overline {\mathbb {Q}}}$$which contain a co-infinite subset$$C \subseteq L$$that is universally definable inLsuch that$$C \cap {\mathbb {Q}}=Z$$. Placing a natural topology on the set$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$of subfields of$${\overline {\mathbb {Q}}}$$, we show that ifZis not thin in$${\mathbb {Q}}$$, then$$S_Z$$is meager in$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$$\mathcal {O}_L$$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$$\exists $$-definable subset of an algebraic extension of$${\mathbb Q}$$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials. 
    more » « less
  2. Abstract. We study the extent to which curves over finite fields are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose C and C ′ are curves over a finite field K, with K-rational base points P and P ′ , and let D and D ′ be the pullbacks (via the Abel–Jacobi map) of the multiplication-by-2 maps on their Jacobians. We say that (C, P) and (C ′ , P ′ ) are doubly isogenous if Jac(C) and Jac(C ′ ) are isogenous over K and Jac(D) and Jac(D ′ ) are isogenous over K. For curves of genus 2 whose automorphism groups contain the dihedral group of order eight, we show that the number of pairs of doubly isogenous curves is larger than na¨ıve heuristics predict, and we provide an explanation for this phenomenon. 
    more » « less
  3. We show that every finite abelian group occurs as the group of rational points of an ordinary abelian variety over F 2 \mathbb {F}_2 , F 3 \mathbb {F}_3 and F 5 \mathbb {F}_5 . We produce partial results for abelian varieties over a general finite field  F q \mathbb {F}_q . In particular, we show that certain abelian groups cannot occur as groups of rational points of abelian varieties over F q \mathbb {F}_q when q q is large. Finally, we show that every finite cyclic group arises as the group of rational points of infinitely many simple abelian varieties over  F 2 \mathbb {F}_2
    more » « less